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PSYCH-UH 1004Q: Statistics for Psychology 

Class 5: Is a score/result extreme? - z-scores 
and the sampling distribution of the mean

Prof. Jon Sprouse 
Psychology



The z-score transformation 
(The foundation of all statistical tests in this course.)



An example to get a feel for the z-score 
transformation: two students, two courses
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In absolute terms, the red student. They got a higher percentage of the 
questions right.

=70% =80%
Which student performed better 
on their respective exam?

But we don’t know how they performed in relative terms - that is, compared to 
the rest of the students in each of their courses. (Maybe the professor of the 
blue course is a harsher grader.)

We already have the tools to answer this question. We can look at the 
distributions of grades in each course, and calculate the percentile ranks of 
their exam scores.
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Finding percentile rank for two distributions
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student grade
1 78
2 72
3 70
4 67
5 65
6 65
7 64
8 62
9 59
10 59
11 59
12 58
13 57
14 57
15 57
16 56
17 55
18 49
19 46
20 45

student grade
1 97
2 96
3 95
4 95
5 94
6 94
7 92
8 91
9 90
10 90
11 89
12 87
13 87
14 86
15 86
16 82
17 82
18 81
19 80
20 79

3rd highest. 
90th percentile.

2nd lowest. 
10th percentile.
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Standardizing the scores
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With computers and the R language, it 
is not too difficult to sort scores, 
calculate percentile ranks, and plot 
the distributions for two different data 
sets.

However, we could also take a 
different approach that leads to a 
number of conceptual advantages 
(which we will discuss later). We can 
standardize the scores. 

Standardizing means to put two 
different distributions on the same 
scale. The trick is to figure out how we 
can do that. The answer is to use our 
two descriptive statistics - mean and 
standard deviation.

z-scores

z-scores



Transforming into z-scores
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The z-score transformation is a very common type of standardization. Here is 
the equation for it. You apply this to every score in a distribution (X), one at a 
time, to derive a new z-score:

z =
X - µ

σ
(I wrote this using population 
parameters to match the book)

The z-score transformation does two things:

It subtracts the mean (µ) from each score (X). This is called mean 
centering because the mean of the distribution is shifted to 0 so that all 
of the scores are symmetric around 0 (negative/positive).

It divides the difference by the standard deviation (σ). This is called 
scaling because it changes the scale to multiples of the standard 
deviation.

1. 

2.

Let’s look at each of these steps in isolation to see their effect.
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Step 1: mean centering (X - µ) 
(These wide x-axes are just for illustration - don’t do this!)
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raw scores

mean centered

raw scores

mean centered

Notice that there is 
no change in the data 
itself. It just shifts to 
be around 0.
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Step 2: scaling (/σ)
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mean centered mean centered

scaled scaled

Check the x-axis. All 
that changed is the 
scale (and some minor 
binning differences)



The arithmetic of the z-transformation
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student grade 
(µ=60)

centering 
(x-µ)

scaled 
(x-µ)/σ

1 78 18 2.17
2 72 12 1.45
3 70 10 1.21
4 67 7 0.84
5 65 5 0.60
6 65 5 0.60
7 64 4 0.48
8 62 2 0.24
9 59 -1 -0.12
10 59 -1 -0.12
11 59 -1 -0.12
12 58 -2 -0.24
13 57 -3 -0.36
14 57 -3 -0.36
15 57 -3 -0.36
16 56 -4 -0.48
17 55 -5 -0.60
18 49 -11 -1.33
19 46 -14 -1.69
20 45 -15 -1.81

student grade 
(µ=88.65)

centering 
(x-µ)

scaled 
(x-µ)/σ

1 97 8.35 1.47
2 96 7.35 1.29
3 95 6.35 1.11
4 95 6.35 1.11
5 94 5.35 0.94
6 94 5.35 0.94
7 92 3.35 0.58
8 91 2.35 0.41
9 90 1.35 0.24
10 90 1.35 0.24
11 89 -0.35 0.06
12 87 -1.65 -0.29
13 87 -1.65 -0.29
14 86 -2.65 -0.47
15 86 -2.65 -0.47
16 82 -6.65 -1.17
17 82 -6.65 -1.17
18 81 -7.65 -1.34 
19 80 -8.65 -1.52 
20 79 -9.65 -1.69



The z-score transformation does not change 
the shape of the distribution
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The z-score transformation is a linear transformation. That is 
a precise mathematical term, but for our purposes, we can 
say that it preserves the relative structure of a data set. 

z =
X - µ

σ

We can see this in our raw and z-score transformed plots. The shape of the 
distribution is the same, except for some minor binning differences that arise 
because of the scale change (I tried to minimize those).

z-score

z-score

Crucially, both 
courses are now on 
the same scale. 
They have the 
same mean. And 
they use the same 
scale - standard 
deviations.
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We can compare z-scores across distributions
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raw: 70% raw: 80%

The z-score transformation allows us to compare 
scores between the two distributions directly.

z: 1.2 z: -1.5

Z-scores work in a very specific way. The mean is 
always 0. The sign of the z-score tells you if the 
score is above (+) or below (-) the mean. The 
magnitude tells us how far above or below the 
mean - in number of standard deviations!

The student in the blue class scored 1.2 sd above 
the mean; the red scored 1.5 below the mean.
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But there is one caveat - shape of the 
distribution
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In order for the z-scores from two distributions to be comparable, the two 
distributions must have the same shape.
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To show this, we can take two very skewed distributions, z-score transform 
them, and then look at the percentile rank of a z-score of +1. 

86% 96%

This is an extreme example, but it illustrates the general point - if you want to 
compare two distributions using z-scores, be sure that they have (roughly) the 
same shape.



The power of z-scores combined with the 
normal distribution



1. A first introduction to the normal distribution 

(We will go into more depth another day.)



The normal distribution
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In the real world, there are an infinite number of distributions that data can 
appear in. But mathematicians have identified several special distributions, 
named them, and explored their mathematical properties (binomial, beta, 
gamma, etc). 

The most important distribution in frequentist statistics is called the normal 
distribution. It is also called the Gaussian distribution after German 
mathematician Carl Friedrich Gauss (1777-1855). And sometimes called the 
“bell curve” after its shape.
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Why is it smooth?
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The normal distribution is a theoretical distribution (defined by math), not an 
empirical one (defined by actual data points). The idea is that this is what we’d 
find if collected a sample of infinite size, and plotted a histogram with infinitely 
small bin widths. We can see this by simulating larger and larger samples:
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The equation for the normal distribution
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All theoretical distributions are defined by an equation. The equation for the 
normal distribution is below. You do not have to memorize this. The equation 
for the normal distribution requires you to enter two numbers (called 
parameters!) in order for it to yield the distribution - those two represent the 
mean and standard deviation of the distribution!
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Caution: You will also notice that the y-axis is labeled “probability density”. I 
have not introduced this idea yet. We’ve only been talking about frequency. 
Please think about it as related to frequency for now. We will discuss it in a 
couple of days.



It is a family of distributions
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By plugging in different means and standard 
deviations, we get different instances of the normal 
distribution. But they are all normal distributions!
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µ = 0 
σ = 1

µ = 2 
σ = .5

µ = -2 
σ = 2.5
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Here they are 
plotted together 
to show the 
effects of the 
parameters. They are all normal 

distributions!

(  )
f(x) =

1

σ
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This really shows 
how µ is “location” 
and σ is “spread”.



Three reasons the normal distribution is 
important to frequentist statistics
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1. It is very common.

A large number of natural and psychological phenomena are distributed 
normally. The saying is that if ancient civilizations knew about the normal 
distribution, they would have built monuments to it, because it is such a 
fundamental aspect of nature.

2. It arises under repeated sampling.

Our goal as scientists is to study populations, and we do that by sampling. As 
we will see later today, if you sample from a single population repeatedly, the 
distribution of the sample means will typically be a normal distribution (this is 
due to the Central Limit Theorem, which we won’t see until later). So, the 
normal distribution is fundamental to frequentist statistics.

3. It has nice mathematical properties.

It is a symmetric distribution. It is determined by only two parameters (mean 
and standard deviation). And, as we will see next, we can calculate percentile 
ranks (and quantiles more generally) easily using z-scores.



The Standard Normal Distribution
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If you take any normal distribution (any mean and standard deviation), and z-
score transform the scores, the result is a normal distribution with a mean of 0 
and a standard deviation of 1. We call it the Standard Normal Distribution.

This follows from the properties of the z-score transformation: it always results 
in a mean of 0 and a standard deviation of 1.
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2. Using z-scores and the standard normal 
distribution to quickly identify percentile ranks



This makes our lives easier, if we want
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The fact that every normal distribution can be converted to a standard normal 
distribution (while preserving the structure of the distribution) means that, for 
all phenomena involving a normal distribution, we really only need to ever 
work with one distribution: the standard normal distribution. 
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µ = 0 
σ = 1

This means that we can calculate all of the properties of this one distribution, 
print it in a textbook (like Appendix A of ours), and then use that for any study 
that we do with normally distributed phenomena.

This was a major advantage in the early 20th century when frequentist 
statistics was developed (because we didn’t have computers to do the 
calculations). It is less of a benefit now, but there are conceptual advantages - 
you can evaluate studies quickly in your mind without doing any calculations.
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The percentage of scores at each z-score
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It is valuable to memorize 
these. Given a z-score, it allows 
you to roughly estimate the 
percentile rank

~34%

~14%
~2%

~34%

~14%
~2%



A famous z-score: +/-1.96
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Here is another z-score worth memorizing: +1.96 and its negative -1.96. 
Together, these two identify the 95% of scores in the middle of the 
distribution.

Another way to look at this is that +/- 1.96 z-scores identifies the scores in the 
two tails that together add up to be the most extreme 5% of scores (2.5% in 
each tail).  



Using table A.1 in the textbook
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You can use the values in 
this table plus basic 
arithmetic to calculate the 
percentage of scores either 
less than or greater than 
any given z.



Using R - the normal distribution functions
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R has built-in functions for various distributions, including the normal 
distribution. This replaces the need for tables in books… with more flexibility.

rnorm(n, mean = 0, sd = 1)

The default options for these assume the standard normal distribution, but you 
can specify other normal distributions by changing the mean and sd arguments.

pnorm(q, mean = 0, sd = 1)

qnorm(p, mean = 0, sd = 1)

distribution function:

random generator:

quantile function:

If you enter a score (q), it will tell you the percentile rank (percentage of 
scores less than or equal to the z-score).

If you enter percentile (p), it will tell you the score that divides the distribution 
at that percentile

This will randomly sample n scores from a normal distribution.



Evaluating a sample relative to a distribution of 
samples 

(Up until now, we’ve been focusing on individuals. But evaluating 
samples is the core of what we do as scientists.)



Evaluating individuals
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Up until now, we’ve been evaluating individual scores against distributions of 
individual scores — asking how common or rare an individual score is based on 
the distribution of scores (e.g., percentile rank). We know two ways to do it:
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distribution of 
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= 192cm

pnorm(192, mean=175, 
sd=10) = .955

option 1: calculate directly

If you know the mean and 
standard deviation, you 
can feed them into 
pnorm().

option 2: z-scores

z =
192 - 175

10
= 1.7
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Look up the percentile rank 
of the z-score 1.7 = .955

use table A.1

use R functions
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Evaluating samples (i.e., groups)
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In science, we rarely want to evaluate individuals. Instead, we want to 
evaluate the samples that we have collected. We want to ask how common or 
rare the sample measurement is. Let’s develop methods to do that!

distribution of 
sample means

pnorm(178.5, mean = ?, 
sd = ?)

option 1: calculate directly

If you know the mean and 
standard deviation, you 
can feed them into 
pnorm().

option 2: z-scores

z = ?
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standard normal

Look up the percentile rank 
of the z-score 1.7 = .955

table A.1

use R functions

x ̄= 178.5

?
sample statistic  
to evaluate
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The distribution of sample means
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How would we create a distribution of sample means?

Choose a sample size that we are interested in.

Select a very large (ideally infinite) number of samples of that size 
from the population of individuals.

Step 2:

Step 1: e.g., 40
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x ̄= 177

and on and on…

sampling



The distribution of sample means
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How would we create a distribution of sample means?

Choose a sample size that we are interested in.

Select a very large (ideally infinite) number of samples of that size 
from the population of individuals.

Step 2:

Step 1: e.g., 40
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Create a distribution from all of the sample means.Step 3:

µ = 175 
σ = 1.6

The result is a distribution of sample means. This distribution gets a special 
name. It is called the sampling distribution of the mean. (In principle, you 
can have sampling distributions of any statistic: mean, median, standard 
deviation, etc. But this one is the foundation of frequentist statistics.)

population sampling distribution



An animation of the sampling distribution of 
the mean
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https://www.esci-dances.thenewstatistics.com/ 

This is an interactive chart that simulates sampling repeatedly from a 
population, calculating a mean for each sample, and drawing the resulting 
distribution.

This will allow 
us to watch 
the sampling 
distribution of 
the mean build 
up! 

https://www.esci-dances.thenewstatistics.com/


The mean of the sampling distribution of the 
mean

33
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The mean of the sampling distribution of the mean is the same as the 
population mean. 

sampling distribution

This follows from the process of random sampling that is used to form the 
sampling distribution of the mean (and the fact that the mean is an unbiased 
estimator).



The standard deviation of the sampling 
distribution of the mean = standard error
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The standard deviation of the sampling distribution of the mean is smaller than 
the standard deviation of the population. We can see this if we plot the two 
distributions on the same x-axis scale.

sampling distribution

The standard deviation of the sampling distribution is an important 
quantity, so it gets its own name - the standard error of the mean, 
or just standard error for short. It also has its own symbol, which is 
the typical standard deviation (of a population) symbol with the 
subscript for sample means.

σx ̄
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The standard error is proportional to the 
sample size
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n = 40 
σx ̄= 1.6

The size of the standard error of the mean is proportional 
to the size of the sample (n). Here is the equation: n

σx ̄=
σ

2

We can show this (inductively) by selecting different sample sizes, simulating 
the sampling distribution of the mean, and calculating the standard error of the 
simulated distributions:

n = 10 
σx ̄= 3.2

n = 20 
σx ̄= 2.2

n = 30 
σx ̄= 1.8
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Now we are ready to evaluate samples!
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In science, we rarely want to evaluate individuals. Instead, we want to 
evaluate the samples that we have collected. We want to ask how common or 
rare the sample measurement is. Let’s develop methods to do that!

pnorm(178.5, mean = 
175, sd = 1.6) = .986

option 1: calculate directly

If you know the mean and 
standard error, you can 
feed them into pnorm().

use R functions

sample statistic  
to evaluate

sampling distribution

x ̄= 178.5 µx ̄= 175 
σx ̄= 1.6



0

500

1000

1500

2000

2500

160 170 180 190
means

co
un
t

0

2

4

6

8

140 160 180 200
height

co
un
t

Now we are ready to evaluate samples!
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In science, we rarely want to evaluate individuals. Instead, we want to 
evaluate the samples that we have collected. We want to ask how common or 
rare the sample measurement is. Let’s develop methods to do that!

pnorm(178.5, mean = 
175, sd = 1.6) = .986

option 1: calculate directly

If you know the mean and 
standard error, you can 
feed them into pnorm().

use R functions

sample statistic  
to evaluate

sampling distribution

x ̄= 178.5 µx ̄= 175 
σx ̄= 1.6

option 2: z-scores standard normal

Look up the percentile rank 
of the z-score 2.2 = .986

table A.1
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z-scores for groups (based on the sampling 
distribution of the mean)

38

If we want to use the z-score method for evaluating a sample mean, we need 
to adjust the z-score formula a bit. It will have the same logic - mean 
centering and scaling:

2

z =
x ̄- µ
σx ̄

But notice that we made two changes.  

First, this is about the sample mean, so we substituted in the sample mean for 
the raw score.  

Second, because we are working with samples that are part of the sampling 
distribution of the mean, the standard deviation is the standard deviation of 
the sampling distribution of the mean. In other words, the standard error.
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Now we are ready to evaluate samples!

39

In science, we rarely want to evaluate individuals. Instead, we want to 
evaluate the samples that we have collected. We want to ask how common or 
rare the sample measurement is. Let’s develop methods to do that!

pnorm(178.5, mean = 
175, sd = 1.6) = .986

option 1: calculate directly

If you know the mean and 
standard error, you can 
feed them into pnorm().

use R functions

sample statistic  
to evaluate

sampling distribution

x ̄= 178.5 µx ̄= 175 
σx ̄= 1.6

option 2: z-scores

z =

standard normal

Look up the percentile rank 
of the z-score 2.2 = .986

table A.1
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What did we learn?
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We learned that a sample with a mean of 178.5cm that was drawn from a 
distribution with a mean of 175cm and a standard deviation of 10cm is more 
extreme than 98.6% of possible samples.
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What did we learn?
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More generally, we learned two options for asking the following question: Is 
the sample that we obtained extreme relative to a given population?
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This is our first step toward inferential 
statistics. The question we ask in 
inferential statistics is a version of this 
question. And the methods we will use 
are built on these methods!


